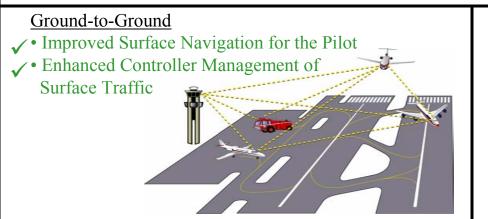


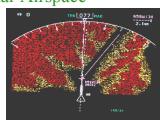
Two Advanced Automatic Dependent Surveillance - Broadcast (ADS-B) Applications Within the FAA Safe Flight 21 Program

Randall Bone, MITRE ICNS 2004 Conference April 28, 2004

Overview


- Safe Flight 21 (SF-21)
- Two ADS-B Advanced Concepts
 - Surveillance Services and Cockpit Display of Traffic Information
 (CDTI) Assisted Visual Separation (CAVS)
 - Background
 - Purpose
 - Concept Description
 - Infrastructure Requirements
 - Maturity
- Closing Remarks


Safe Flight 21 (SF-21) Program Overview

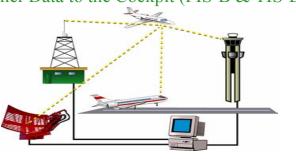

- Expedite emerging technology
- Government and industry cooperation
- Demonstrate nine enhancements in test beds: Alaska, Louisville, Memphis...
- Examine requirements / risks, build a little, test a little, deploy a little (transition to national airspace)

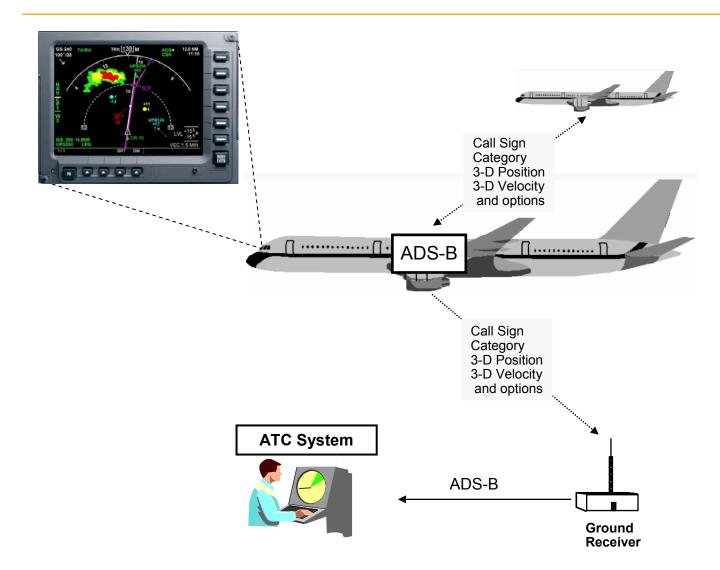
Air-to-Ground & Self-Contained

- ✓ Affordable Reduction of Controlled Flight into Terrain (CFIT)
- ✓ Surveillance Coverage in Non-Radar Airspace

Air-to-Air

- Improved Separation Standards
- ✓ Improved Low-Visibility Approaches
- ✓ Enhanced See and Avoid




Ground-to-Air

✓ • Weather and Other Data to the Cockpit (FIS-B & TIS-B)

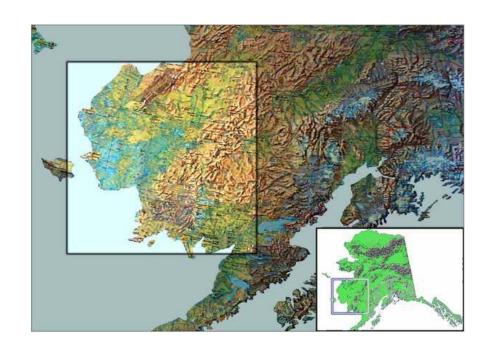
ADS-B

SF-21 Locations & Objectives

- Ohio River Valley Cargo Airline Association (CAA)
 - United Parcel Service and Federal Express
 - Increased hub throughput and improved efficiency/safety
 - Surface management
 - Terminal operations
 - ADS-B / Air Traffic Control (ATC) Automation interfaces
- Alaska Capstone / FAA Alaska Region
 - Reduce accident rates for General Aviation / Air Taxi
 - Poor weather
 - Controlled Flight Into Terrain
 - Mid-air collisions
 - Improve search and rescue
 - Provide highly integrated cockpit and ATC services
- Gulf of Mexico
 - Surveillance in non-radar areas
 - Helicopter operators
 - Commercial airlines

Surveillance Services / Radar-Like Services using ADS-B

Background

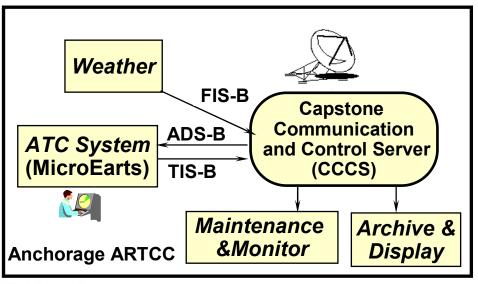

- Radar surveillance capability accounts for significant operational efficiency, safety, and improved services
 - E.g., overcomes "one-in-one-out" procedures only one Instrument Flight Rules (IFR) aircraft at a time is allowed to enter the non-radar airspace
- Not all airspace is under radar surveillance coverage
 - Subject to line-of-sight and shadowing effects
 - Coverage does not exist down to surface in all areas
 - Terrain or cost constraints limit the deployment of radars in many areas
- Radar surveillance capability makes it possible to offer a wide range of services to Visual Flight Rules and IFR aircraft
 - Smaller separation minima
 - Flight following and traffic advisories
 - Minimum safe altitude warning
 - Navigational assistance
 - Search-and-rescue activities
- However, it is not cost-effective to site and install ground-based radar systems to achieve complete radar coverage

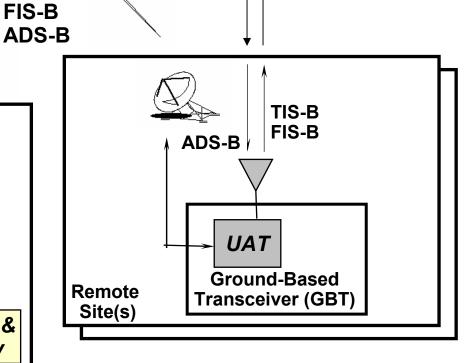
Purpose

- Provide cost-effective radarlike services where not currently available
- In Alaska...
 - Bethel is the "hub" for 50+ villages
 - Region is nearly 100% dependent upon aviation
 - High accident rate
 - No surveillance radar coverage below ~5000 ft
 - Intended to require no increase in controller and pilot workload

Concept Description

- ADS-B to provide the controller with position and other information on ADS-B-equipped aircraft on a surveillance display
 - Depiction of ADS-B-derived information on the ATC display similar to radar
- Network of strategically placed ground-based listening stations
- Same services and procedures should be used for both ADS-B-derived and conventional radar data
- In Alaska...
 - ADS-B can be used as a source for aircraft position beyond or below radar coverage or when primary and / or secondary radar surveillance systems are unusable or unavailable
 - ADS-B is a tertiary form of surveillance, with raw radar remaining primary and beacon system remaining secondary
 - Controllers requesting ADS-B now to be primary (controllers have developed confidence in the ADS-B data)
 - Phraseology for transfer of radar identification (i.e., "handoff," "radar contact," "point out," and "traffic" apply)




Infrastructure Requirements (1 of 3)

ANICS

TIS-B

Note: Satellite-based communications are only necessary due to difficult connectivity in remote locations in this area.

CDTI) Multi-

Function

GPS

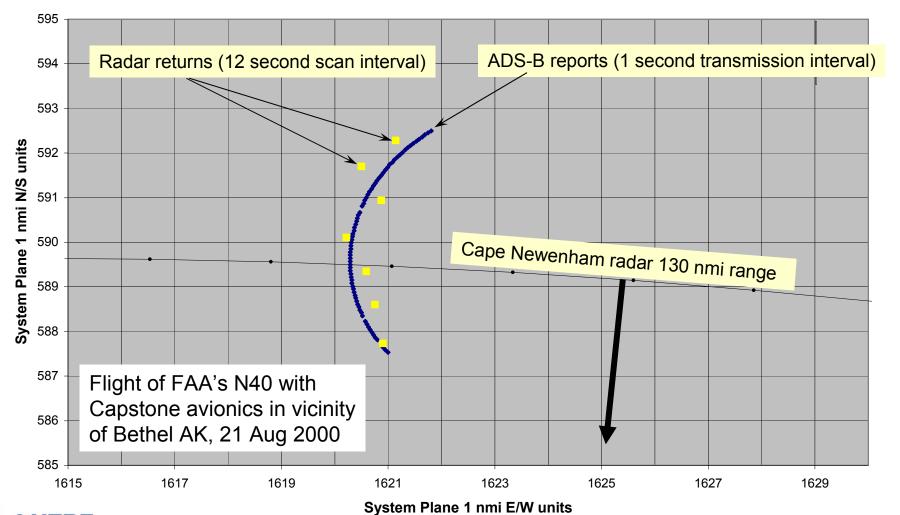
UAT

Infrastructure Requirements (2 of 3) GBT

Infrastructure Requirements (3 of 3) – Avionics

MITRE

Maturity

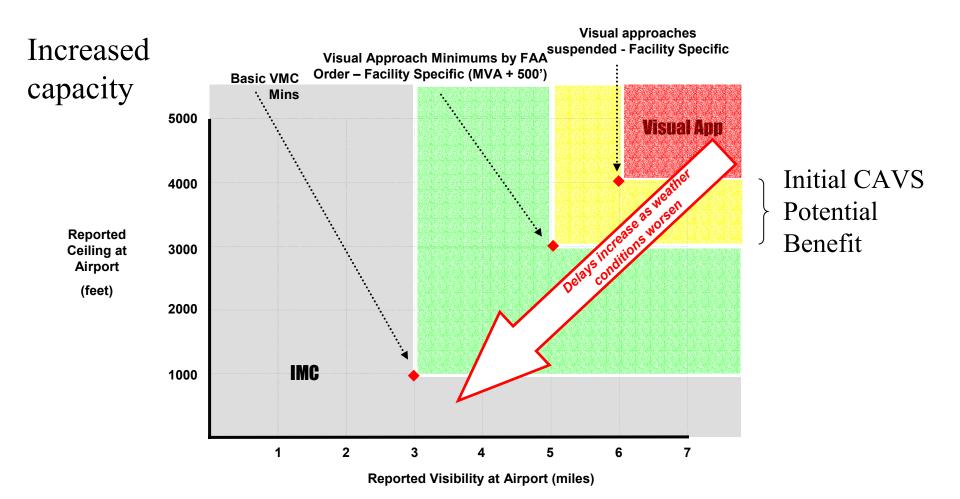

- In Alaska...
 - Total of 11 ADS-B operational ground stations in service
 - Three provide ADS-B information to Anchorage Center for IFR ATC services
 - Eight more provide uplink-only services
 - 160,000 square miles receiving uplink services
 - These eight to provide ADS-B information to ARTCC for IFR services soon
 - Radar-like ATC services since January 1, 2001
 - 200+ aircraft equipped to date
 - 1,000,000+ flight hours on the airborne equipment
- Planning for expansion to Southeast Alaska and remainder of US
- Concept being implemented by Australia
- International standards being developed

Radar Versus ADS-B

Cape Newenham Long Range Radar/ADS-B Comparison: Turning Track

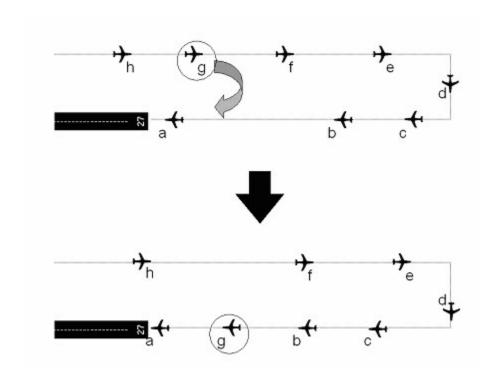
Cockpit Display of Traffic Information (CDTI) Assisted Visual Separation (CAVS) during Visual Approach

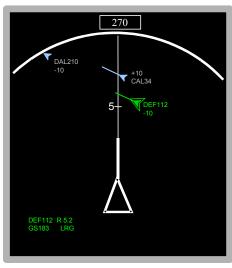
(formerly CEFR)

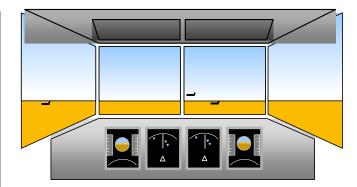


Background – Visual Separation

- Visual separation can be applied by ATC to separate aircraft by a pilot who sees the other aircraft involved
- Traffic advisories are issued by ATC to the pilot who must search for the traffic, acquire the traffic, and accept responsibility for maintaining separation from that aircraft
- Pilot acceptance of visual separation includes:
 - Maintaining constant visual surveillance;
 - Maneuvering the aircraft as necessary to avoid the other aircraft or to maintain in-trail separation;
 - Avoiding wake;
 - Not passing the other aircraft until it is no longer a factor; and
 - Promptly notifying ATC if visual contact with the other aircraft is lost
- Pilot acceptance of visual separation relieves the controller of separation responsibility for that particular aircraft and allows for more flexible operations


Purpose (1 of 3)


Purpose (2 of 3)


Controller flexibility

Purpose (3 of 3)

Increased pilot traffic awareness when conducting visual approaches in marginal conditions

Concept Description (1 of 5)

• What?

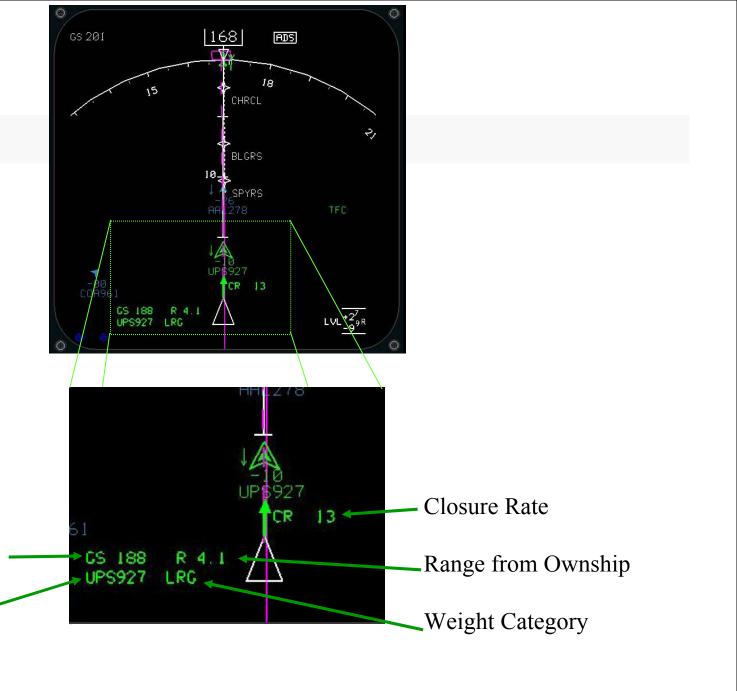
- Visual separation including the CDTI (i.e., CDTI is authorized for use in lieu of visual out-the-window contact)
- No other operational changes to current visual approach procedures

• Where?

Terminal Area - Class B or C airspace

• Why?

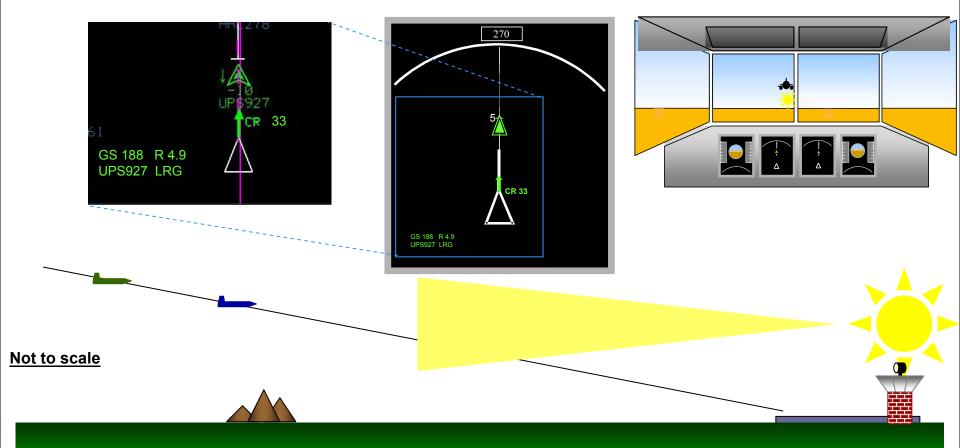
 To increase capacity under deteriorated weather conditions when visual approaches are suspended



Concept
Description
(2 of 5)

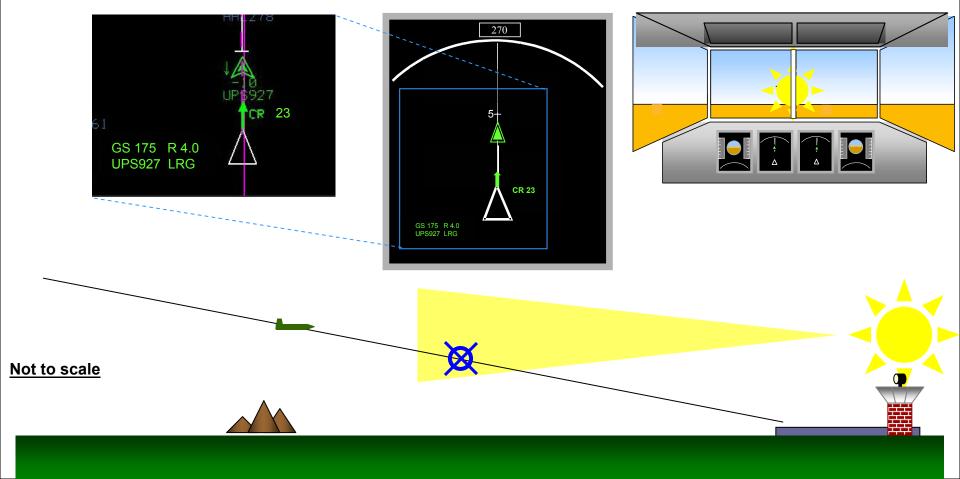
CDTI and Selected Target

Groundspeed


Call Sign

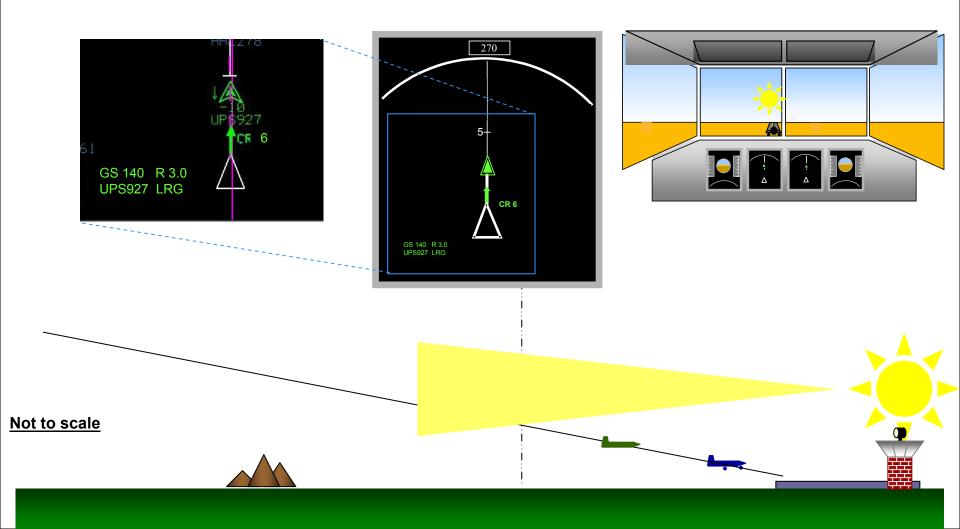
Concept Description (3 of 5)

Visual Approach CAVS Example - Set-Up


- Controller provides traffic advisory
- Pilot initial out-the-window acquisition and correlation with CDTI
- Pilot target selection on the CDTI
- Controller clearance to maintain visual separation and / or visual approach

Concept Description (4 of 5)

Visual Approach CAVS Example - CDTI for Separation


 Once lead aircraft is lost out-the-window, CDTI only is used for separation (CAVS concept)

Concept Description (5 of 5)

Visual Approach CAVS Example - Landing

 Continue to normal landing using both visual and / or CDTI

Infrastructure Requirements

Flight Deck —

ATC — Method of identifying capable aircraft

Maturity (1 of 5)

• 2002

- Initial application description
- Initial business case
- MITRE simulations
- Call sign procedure approved
- Formal decision to continue research

• 2003

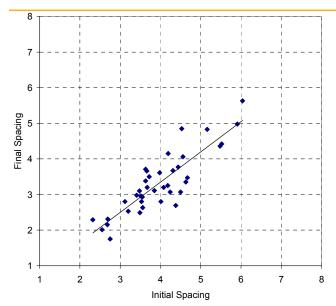
- Updated business case
- MITRE simulations
- Formal decision to continue research
- Initial operational safety assessment
- 2004
 - Operational approval planned to be sought by UPS

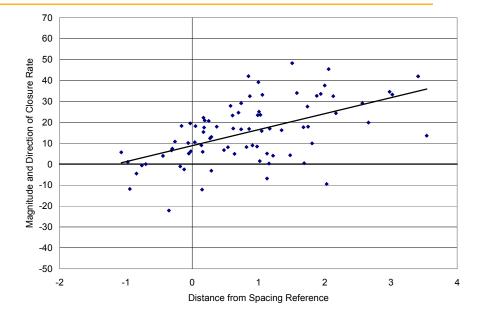
Maturity (2 of 5)

Overview of Four MITRE Simulations

- Participants
 - 56 Pilots
 - − ~10 Air Traffic Controllers
- Simulation Environment
 - Medium fidelity, twin jet aircraft
 - CDTI (Primary field of view & throttle quadrant)
 - Other traffic: large, 757, heavy
 - Terminal ATC display
 - Louisville, Kentucky (SDF)
- Procedure
 - Conditions: Day and night; Instrument and visual approaches
 - Independent Variables: Cloud thicknesses, spacing assignment, CDTI size and location, throttle control / workload, spacing alert, failure condition, 2 crew member operations
 - Data: Subjective- pilot and controller acceptability, displays, workload,
 call sign procedures; Objective- pilot spacing performance

Maturity (3 of 5)


Results of Four MITRE Simulations


- CEFR concept / separation based on a CDTI is viable from a pilot (N=56) perspective based on feedback on the following topics:
 - General difficulty of the procedure
 - CDTI use for spacing and separation
 - Safety
 - Workload (about the same as current visual approaches)
 - Head down time
 - Comparison to current operations (day and night visual approaches)
- Time on CDTI for separation not an issue
- ATC continues to play key role

Maturity (4 of 5)

Results of Final MITRE Simulation

- Relationship between initial spacing and spacing at the threshold when following large aircraft
- Conclusion: As initial separation decreased the threshold spacing decreased

- Relationship between derived distance from spacing reference and mean closure rate across the entire approach
- Conclusion: CDTI used for higher closure rates when spacing between aircraft was greater. Lower closure rates when spacing between aircraft was reduced

Maturity (5 of 5)

- UPS equipping with AT2000 CDTI and conducting enhanced situational awareness with 757 / 767 fleet (total of 107 aircraft)
 - Includes conflict detection, situational awareness, and see and avoid
- Metrics being collected and measured against baseline
- Next steps:
 - Implement call sign use in traffic advisory procedure
 - UPS plans to seek approval for CEFR in late 2004

Closing Remarks

- Development process for Surveillance Services and CAVS
 - User and approver involvement throughout development
 - Attempted to remain as close to current procedures as possible

Safe Flight 21 Activity Status

- Over past four years ADS-B foundation put in place
 - Avionics & Standards...Ground Infrastructure...Automation
- Service Portfolio
 - Radar-like services...Enhanced Situational Awareness...Surface Management...FIS-B...TIS-B
- Interest in other "pockets" to solve specific needs / services

